PART 6 – INTRODUCTION OF ALGORITHM

Dosen Pengampu: Yelna Yuristiary, ST, MT

Outline

- The informal definition of an algorithm
- The operations in an algorithm
- The formal definition of an algorithm

What's an algorithm?

- Dictionary definition: a procedure for solving a mathematical problem in a finite number of steps that frequently involves repetition of an operation; broadly: a step-by-step method for accomplishing some task
- Informal definition: an ordered sequence of instructions (operations) that is guaranteed to solve a specific problem
 - Step 1: Do something
 - Step 2: Do something
 - Step 3: Do something
 - . . .
 - Step N: Stop, you are finished

Operations

Algorithm is everywhere, not only in CS

Operations in an algorithm

- A sequential operation carries out a single well-defined task. When that task is finished, the algorithm moves on to the next operation.
 - Add 1 cup of butter to the mixture in the bowl
 - Set the value of x to 1
- A conditional operation is the "question-asking" instructions of an algorithm. It asks a question and then select the next operation to be executed according to the question answer
 - If the mixture is too dry, then add 0.5 cup of water to the bowl
 - If x is not equal to 0, then set y equal to 1/x; otherwise, print an error message that says we cannot divide by 0

Variable

carry 5

Set the value of carry to 0

carry 0

I 4

Set the value of I to I+1 (or I=I+1) (or add 1 to I)

Operations in an algorithm (Cont.)

- An Iterative operation is a "looping" instruction of an algorithm. It tells us not to go on to the next instruction, but, instead, to go back and repeat the execution of a pervious block of instructions
 - Repeat the previous two operations until the mixture has thickened
 - Repeat steps 1, 2, and 3 until the value of y is equal to +1

Algorithm for programming your **VCR**

Which instructions are sequential, conditional, and iterative?

Algorithm for Programming Your VCR

- If the clock and calendar are not correctly set, then go to page 9 of the instruction manual and Step 1 follow the instructions there before proceeding.
- Place a blank tape into the VCR tape slot. Step 2
- Repeat steps 4 through 7 for each program that you wish to record, up to a maximum of 10 Step 3 shows.
- Enter the channel number that you wish to record, and press the button labeled CHAN. Step 4
- Enter the time that you wish recording to start, and then press the button labeled TIME-START. Step 5
- Enter the time that you wish recording to stop, and then press the button labeled TIME-FINISH. Step 6
- This completes the programming of one show. If you do not wish to record anything else Step 7 press the button labeled END-PROG.
- Step 8 Press the button labeled TIMER. Your VCR is now ready to record.

Formal definition of an algorithm

- An Algorithm is a well-ordered collection of unambiguous and effectively computable operations that, when executed, produces a result and halts in a finite amount of time.
- An algorithm is any well-defined computational procedure that takes some inputs and produce some outputs.
 - An algorithm is a sequence of computation steps that transform the input into the output.
- Sorting problem
 - Input: A sequence of n numbers
 - Output: A permutation (reordering) $< a_1, a_2, ..., a_n >$ of the input sequence such that $< a_1, a_2, ..., a_n >$
 - An instance of the sorting problem $a_1 \leq a_2 \leq \ldots \leq a_n$
 - $(31, 41, 59, 26, 41, 58) \rightarrow (26, 31, 41, 41, 58, 59)$

Is the following an algorithm?

- Step 1: Wet hair
- Step 2: Lather
- Step 3: Rinse
- Step 4: Repeat

...a well-ordered collection...

- Clear and un-ambiguous ordering to these operations
 - What's the next operation when we finish any one operation?
 - At step 4, what operations should be repeated?
- Ambiguous ordering
 - Go back and do it again
 - Go back to step 3 and begin execution from that point
 - Start over
 - Start over from step 1
 - If you understand this material, you may skip ahead
 - If you understand this material, skip ahead to line 21

...of unambiguous and effectively computable operations...

- An unambiguous operation is one that can be understood and carried out directly by the computing agent without needing to be further simplified or explained
 - Primitive (operation)
- Effectively computable or doable operation
 - There exists a computational process that allows the computing agent to complete that operation successfully

...of unambiguous and effectively computable operations... (Cont.)

- Step 1: Make the crust
- Step 2: Make the cherry filling
- Step 3: Pour the filling into the crust
- Step 4: Bake at 350°F for 45 minutes

- Step 1: Make the crust
 - 1.1 Take one and one-third cups flour
 - 1.2 Sift the flour
 - 1.3 Mix the sifted flour with onehalf cup butter and one-fourth cup water
 - Roll into two 9-inch pie crusts
- Step 2: make the cherry filling
 - 2.1 open a 16-ounce can of cherry pie filling and pour into the bowl
 - 2.2 add a dash of cinnamon and nutmeg, and stir

Algorithm for making a cherry pie

...of unambiguous and effectively computable operations... (Cont.)

- Which of the following are primitive operations for a computer?
 - Add x and y to get the sum z
 - See whether x is greater than, equal to, or less than y
 - Sort a list of names into alphabetical order
 - Factor an arbitrary integer into all of its prime factors
 - Make a cherry pie

...of unambiguous and effectively computable operations... (Cont.)

- Find and Print out the 100th prime number
 - Step 1: generate a list L of all the prime numbers
 - Step 2: Sort the list L into ascending order
 - Step 3: Print out the 100th element in the list
 - Step 4: Stop

- Write out the exact decimal value of π
 - π cannot be represented exactly
- Set Average to Sum/Number
 - What if number = 0
- Set the value of result to
 - What if N < 0

1 C

 \sqrt{N}

- Add 1 to the current value of x
 - What if x currently has no value

... that produces a result...

- In order to know whether a solution is correct, an algorithm must produce a result that is observable to a user
 - What are the results of the VCR algorithm, cherry-pie making algorithm?
 - Sometimes it is not possible for an algorithm to produce the correct answer because for a given set of input, a correct answer does not exist
 - Error messages (result) should be produced instead

... and halts in a finite amount of time...

- The result must be produced after the execution of a finite number of operations, and we must guarantee that algorithm eventually reaches a statement that says "Stop, you are done"
 - The original shampooing algorithm does not stop

Algorithm for shampooing your hair

- 1. Wet your hair
- 2. Set the value of WashCount to 0
- 3. Repeat Steps 4 through 6 until the value of WashCount equals 2
- 4. Lather your hair
- 5. Rinse your hair
- 6. Add 1 to the value of WashCount
- 7. Stop, you have finished shampooing your hair

Alternative algorithm for shampooing your hair

- 1. Wet your hair
- 2. Lather your hair
- 3. Rinse your hair
- 4. Lather your hair
- 5. Rinse your hair
- 6. Stop, you have finished shampooing your hair

What kinds of problems are solved by algorithms?

- Internet routing: single-source shortest paths
- Search engine: string matching
- Public-key cryptography and digital signatures: numbertheoretic algorithms
- Allocate scarce resources in the most beneficial way: linear programming
- . . .

Can every problem be solved algorithmically?

- There are problems for which no generalized algorithmic solution can possibly exist (unsolvable)
- There are also problems for which no efficient solution is known: NP-Complete problem
 - It is unknown if efficient algorithms exist for NP-complete problems
 - If an efficient algorithm exists for any one of them, then efficient algorithms exist for all of them
 - An example: Traveling-Salesman Problem (TSP)
- There are problems that we don't know how to solve algorithmically

Algorithms and other technologies

- Algorithms are at the core of most technologies used in contemporary computers
 - The hardware design use algorithms
 - The design of any GUI relies on algorithms
 - Routing in networks relies heavily on algorithms
 - Compilers, interpreters, or assemblers make extensive use of algorithms

Form of Algorithm

- Two form of Algorithm :
 - Flowchart
 - Pseudo Code
- Flowchart
 - A graphical or symbolic representation of a process.
 - Each step in the process is represented by a different symbol and contains a short description of the process step.
 - The flow chart symbols are linked together with arrows showing the process flow direction.

• Flowchart Symbol —

	Start or end of the program
	Computational steps or processing function of a program
	Input or output operation
\Diamond	Decision making and branching
	Connector or joining of two parts of program
	Magnetic Tape
9	Magnetic Disk
	Off-page connector
	Flow line
$\leftarrow \rightarrow \uparrow \downarrow$	Annotation
L	Display
$\overline{}$	

• Flowchart for Shampooing Algorithm

- Pseudocode
 - a compact and informal high-level description of a computer programming algorithm that uses the structural conventions of a programming language, but is intended for human reading rather than machine reading.
- Rules for Pseudocode
 - Write only one statement per line
 - Each statement in your pseudocode should express just one action for the computer.

 PSEUDOCODE:
 PSEUDOCODE:
 PSEUDOCODE:
 PROPRIEM PROPRIE

READ name, hourlyRate, hoursWorked, deductionRate grossPay = hourlyRate * hoursWorked deduction = grossPay * deductionRate netPay = grossPay - deduction
WRITE name, grossPay, deduction, netPay

Capitalize initial keyword

READ, WRITE, IF, ELSE, ENDIF, WHILE, ENDWHILE, REPEAT, UNTIL

- Indent to show hierarchy
 - SEQUENCE: keep statements that are "stacked" in sequence all starting in the same column.
 - SELECTION: indent the statements that fall inside the selection structure, but not the keywords that form the selection.
 - LOOPING: indent the statements that fall inside the loop, but not the keywords that form the loop.
 PSEUDOCODE:

Form of Algorithm

- End Multiline Structures
 - See how the IF/ELSE/ENDIF is constructed above. The ENDIF (or END whatever) always is in line with the IF (or whatever starts the structure).
- Keep statements language independent
 - Resist the urge to write in whatever language you are most comfortable with.
- SELECTION structure of pseudocode :
 - Single IF

```
IF amount < 1000
interestRate = .06
ELSE
interestRate = .10
ENDIF
```

Nesting IF

- LOOPING structure
 - WHILE statement

```
count = 0
WHILE count < 10
ADD 1 to count
WRITE count
ENDWHILE
WRITE "The end"
```

Form of Algorithm

• REPEAT statement

```
count = 0
REPEAT
ADD 1 to count
WRITE count
UNTIL count >= 10
WRITE "The end"
```